
High Performance String Matching Algorithm for a
Network Intrusion Prevention System (NIPS)
Yaron Weinsberg Shimrit Tzur-David Danny Dolev

The Hebrew University Of Jerusalem
Email: {wyaron,shimritd,dolev}@cs.huji.ac.il

Tal Anker
Radlan - a Marvell Company

Email: tala@marvell.com

Abstract— Intrusion Detection systems (IDS) were developed to
identify and report attacks in the late 1990s, as hacker attacks
and network worms began to affect the internet. Traditional IDS
technologies detect hostile traffic and send alerts but do nothing
to stop the attacks. Network Intrusion Prevention Systems (NIPS)
are deployed in-line with the network segment being protected. As
the traffic passes through the NIPS, it is inspected for the presence
of an attack. Like viruses, most intruder activities have some sort
of signatures. Therefore, a pattern-matching algorithm resides at
the heart of the NIPS. When an attack is identified, the NIPS
blocks the offending data. There is an alleged trade-off between
the accuracy of detection and algorithmic efficiency. Both are
paramount in ensuring that legitimate traffic is not delayed or
disrupted as it flows through the device. For this reason, the
pattern-matching algorithm must be able to operate at wire
speed, while simultaneously detecting the main bulk of intrusions.
With networking speeds doubling every year, it is becoming
increasingly difficult for software based solutions to keep up
with the line rates. This paper presents a novel pattern-matching
algorithm. The algorithm uses a Ternary Content Addressable
Memory (TCAM) and is capable of matching multiple patterns
in a single operation. The algorithm achieves line-rate speed of
several orders of magnitude faster than current works, while
attaining similar accuracy of detection. Furthermore, our system
is fully compatible with Snort’s rules syntax, which is the de
facto standard for intrusion prevention systems.

I. INTRODUCTION

VanDyke Software [1] has just announced the results of
a security-related survey. Although viruses were the most
significant threats faced by the respondents, 66% of the
companies chose system penetration as the largest threat to
their enterprises. The survey also revealed that firewalls are not
always effective against penetrations as the average firewall is
designed to deny clearly suspicious traffic; for example, an
attempt to telnet to a device when corporate security policy
completely forbids telnet access.

The inadequacies inherent in current network defense mech-
anisms have motivated the development of a new breed of
security products, called Network Intrusion Prevention Systems
(NIPS). These systems deploy proactive defense mechanisms
designed to detect malicious packets within normal network
traffic. Once identified, the malicious traffic is usually blocked.

Most NIPS products are basically Intrusion Detection Sys-
tems (IDS) that operate in-line and are thus dependent on
pattern-matching to recognize malicious content within indi-
vidual packets (or across groups of packets). NIPS systems
are usually comprised of two major components: a pattern-

matching engine and a complementary packet classification
engine. The pattern matching engine’s input is a packet and
its output is a set of matched patterns belonging to the set of
well known attack’s signatures.

There are a number of challenges in implementing a NIPS
device; These all stem from the fact that a NIPS device is
designed to work in-line, thus presenting both a bottleneck
and a single point of failure. If the NIPS device fails, it
can seriously impact the availability of the entire network.
If a NIPS device struggles to keep up with traffic speeds, it
becomes a bottleneck, thus increasing latency and reducing
throughput.

The current trend for integrating security with network
switches and routers both at the network edge and at the
enterprise gateway, implies that the NIPS device must meet
stringent network performance and reliability requirements.

This work is a part of a research project aimed at designing
and implementing a hardware based NIPS device [2]. A core
component of any NIPS appliance is its pattern matching
component. In this paper we present a novel pattern matching
algorithm, called RTCAM (Rotating TCAM), which suggests
the usage of an off-the-shelf TCAM and some additional
logic that can be implemented in HW. The RTCAM algorithm
enables the NIPS appliance to operate at an aggregate rate of
several gigabit per second.

A. Snort’s Database

Snort [3] is an open source NIPS that is commonly used
in industry. Snort contains a database of rules with several
thousands of attack signatures. Each of Snort’s rules contains
a header and several content fields. The header part consists of
a packet identifier (protocol, source/destination IPs and ports),
while the content part contains one or more patterns that
may have some correlation between them. A rule is matched
only if all of its patterns are matched with the expected
correlation among them. The Snort rule syntax is the de facto
industrial standard. NIPS devices which are compliant with
this standard have a great advantage - the same database can be
transparently imported from one engine to another. As opposed
to several hardware based NIPS devices, our solution is fully
Snort compatible.

Internally, Snort uses a software based pattern matching
algorithm, a variant of the Boyer-Moore algorithm, which is
applied to a set of keywords held in an Aho-Corassick like

keyword tree. Current Snort performance on high-end PCs is
400 Mbps for large packet sizes.

II. NOTATIONS AND DEFINITIONS

DEFINITION 1 A pattern P is define as a string of characters
from an alphabet Σ which need to be identified within the input
text. A sub-pattern Ps is define as a sub-string of a pattern P.

DEFINITION 2 A search window is define as a part of the
input text within which a sub-pattern is searched.

DEFINITION 3 A shift is define as the number of bytes the
algorithm can safely skip without losing any of the patterns
match. Formally, a pattern P of length m occurs with shift s
in text T of length n if 0 ≤ s ≤ n−m and T[s+1..s+m] = P[1..m].

DEFINITION 4 A string-matching algorithm is define as fol-
lows: Define the text as an array T[1..n] and the pattern as
an array P[1..m], and assume that the elements of P and T
are characters drawn from a finite alphabet Σ. The string-
matching problem is the problem of finding the shifts. The
extended problem of finding multiple patterns in a given text
is called “multiple pattern matching” and its goal is to output
the positions of all occurrences of the patterns in the text.
We formalize the multiple pattern string-matching problem by:
T = t[1..n] and a set of r patterns P, such that Pj ∈ P, where
1 ≤ j ≤ r (the patterns may have different lengths).

III. RELATED WORK

The string matching algorithm is an essential building
block for NIPS. Most algorithms are either too complex to
be implemented in hardware, or provide poor performance
(See [4], [5], [6], [7], [8], [9], [10], [11], [12] for some known
algorithms). This section presents state-of-the-art hardware
based algorithms.

A. Parallel Bloom Filters

The Parallel Bloom Filters [13], [14] algorithm uses a bloom
filter for each possible pattern length. Briefly, a bloom filter
uses several hash methods that reduce the potential patterns
space that may match the search window. The paper gives a
reasonable cost-space tradeoff by using four parallel engines.
The algorithm can push four bytes in a single clock cycle,
with a throughput of approximately 2.46Gbps. The fact that
each different pattern length requires a separate bloom filter is
a limiting factor, especially when dealing with very long virus
definitions that can be thousands of bytes long.

B. Network Processor Pattern Matching

The work of Liu et al. [15] describes a shift based algorithm
that uses a network processor with a memory based hashing
engine. It uses a prefix sliding window of length w, which
shifts from the leftmost byte to the rightmost byte of the
text. Their algorithm only supports simple patterns, with no
identification of correlation of patterns. The algorithm uses
a shift table (of size (28)w) that includes all possible w bytes
combinations. At the time of the introduction of this algorithm,

setting w to 4 was sufficient, since most Snort signatures were
that long. However, the length of signatures used today is an
average 12 bytes. Maintaining a table for w = 12 is impractical.
A major limitation in using a small window size is the large
number of false positive matches. For the proposed w = 4, the
algorithm obtains an average shift of ∼ 2.

C. TCAM Pattern Matching

A TCAM [16] is an advanced memory chip that can store
three values for every bit: zero, one and “don’t care”. The
memory is content addressable; thus, the time required to find
an item is considerably reduced. The state-of-the-art in pattern
matching algorithms that uses TCAM has been presented by
Lakshman et al. [12]. The proposed algorithm places the
set of the attacks’ signatures in the TCAM and deploys a
simple “brute-force” pattern-matching algorithm. A key of w
bytes is consecutively constructed from the packet (by shifting
the text one byte at a time), and the TCAM looks for a
match. Assuming that the packet length is n, the algorithm
requires n TCAM lookups. If a single TCAM lookup takes
4 ns, this brute force algorithm yields a matching speed of
8×n[Bytes]/4n[ns] = 2 Gbps (denoted as Naive Scan Rate).

IV. THE ROTATING TCAM (RTCAM) ALGORITHM

This section presents the RTCAM pattern matching algo-
rithm. We begin with a high level description of the RTCAM
algorithm. We will then introduce its internal data structures
and conclude with an example.

A. Populating The TCAM

A TCAM of size M, can be configured to hold �M/w� rows,
where w is the TCAM width. The TCAM is populated in an
offline process with two phases. In the first phase, we split
the rule’s signatures (patterns) to fit in the chosen w. Patterns
longer than w occupy more than one row. The pattern in the
first row is marked as the ‘pattern’s prefix”. Short patterns,
marked as prefixes, are padded to the size of w by using the
TCAM “don’t care” bit. Each TCAM row has a corresponding
shift value that states the number of bytes we can safely
shift in the packet when a match occurs. In this phase all
TCAM rows have a shift value of 0. In the next phase, a set
of shifted sub-patterns is created for each pattern prefix, by
shifting the prefix to the right, losing the rightmost character
and adding don’t care at the left. Such a rotation increases
the shift value by one1. We repeat this process until all of the
pattern’s bytes are don’t care (Note that similar sub-patterns
are collided together). Since a TCAM lookup returns the first
matched row, the TCAM rows are ordered according to their
shift values in an ascending order. The last row corresponds
to the maximum shift value and contains w don’t care bytes,
thus providing the default match row.

Note that a TCAM manufacturer can easily implement the
rotating effect by only storing the prefix pattern and utilizing
internal clock cycles with a slightly modified TCAM logic.
This will further reduce the amount of required TCAM space.

1Thus the name Rotating TCAM

B. High-Level Runtime Operation

This section provides a high-level description of the RT-
CAM algorithm. The algorithm operates in 3 or 4 steps: (i)
A “key” of size w bytes is constructed from the packet at
position = pos (initially pos = 0). (ii) A TCAM lookup is
invoked and the matched row is obtained. (iii) The correspond-
ing row shift value is retrieved. A shift value greater than
zero indicates that none of the patterns matched the given key
and we can repeat step (i) with position = position+ shi f t. A
zero value implies that a prefix pattern has matched the key
and step (iv) is invoked. This step queries the internal data
structures (discussed in IV-C) in order to locate the potential
attack patterns. The simple case occurs if the matched pattern
is smaller than the key size (w). In this case, the relevant
pattern is added to a dedicated “Matched Patterns List” and
step (i) is invoked with position = position+1. If the pattern is
a partial match (i.e., it matched the prefix of a longer pattern),
the rest of the pattern should be matched as well. One way to
do this is to compare the rest of the packet and pattern using
memory instructions. A faster way is to use the TCAM again
to reduce the memory access latency. Step (iv) repeatedly uses
the TCAM to match the rest of the pattern by splitting it
into several w sub-patterns and iteratively looking it up in the
TCAM. This operation is performed in the context of a specific
rule (the rule to which the pattern belongs). The pattern can
be marked as fully-matched, only if all of the TCAM matched
rows correspond to a shift value of zero. Otherwise, step (i)
is invoked again with the position increased by one. Pseudo
code is presented in algorithm 1.

C. Data Structures

We will now present the data structures that are used by the
RTCAM algorithm.

1) Patterns List: The patterns list data structure is accessed
in step (iv) of the algorithm (e.g. for comparing the suffix
of a pattern with the packet content). A patterns list entry
contains several fields which hold the information needed to
implement the various Snort keywords: len - is the pattern’s
length; root - is a boolean that indicates whether this pattern is
the first pattern of a rule; offset - indicates from where in the
packet the pattern should be searched; distance - the minimum
number of bytes allowed between two successive matches (i.e.
the previous pattern match and the current match); within - the
maximum number of bytes allowed between two successive
pattern matches; depth - how far into the packet the algorithm
should search for the specified pattern; TCAM Ptrs - an array
of TCAM references that are used in step (iv) of the algorithm
whenever the pattern’s length is greater than w.

2) TCAM Rules Table (TRT): This table correlates between
a TCAM row and the patterns list. Each table entry contains
the shift value, an inclusion patterns list and a list of associated
patterns. When a TCAM match occurs, we associate the
matched TCAM row content with the set of patterns containing
the matched row as their prefix. The inclusion list is used to
identify the patterns shorter than w that are prefixes of the
matched pattern (TCAM row).

Algorithm 1 TCAM Pattern Matching
1: T (Packet) = {Ti,1 ≤ i ≤ n}
2: pos ⇐ 1
3: shi f t ⇐ 0
4: while pos ≤ n−width do
5: Step (i)
6: key ⇐ T[pos,..,pos+width−1]
7: Step (ii)
8: entry = TCAM.Lookup(key)
9: Step (iii)

10: shi f t ⇐ entry.shi f t
11: if shi f t �= 0 then
12: pos ⇐ pos+ shi f t
13: continue
14: end if
15: Step (iv)
16: for all current = entry.PatternNode.next �= null do
17: if current.len ≤ width OR

checkSubPatterns(current.len, pos, current.TCAM Ptrs)==
True then

18: MatchedList.add(current)
19: end if
20: end for
21: end while
1: checkSubPatterns(len, pos, TCAM Ptrs)
2: while pos ≤ len−width do
3: key ⇐ T[pos,..,pos+width−1]
4: entry = TCAM.lookup(key)
5: if entry.shi f t �= 0 or entry.id �∈ TCAM Ptrs then
6: return f alse
7: end if
8: return true
9: end while

3) Matched Patterns List: This list holds the matched
patterns for the current processed packet. Each entry contains
the matched patterns and their corresponding end position in
the packet. In case of a match, if the pattern is correlated, the
algorithm checks if the previous pattern is already in the list.
Additionally, the algorithm checks if the pattern’s position is
compliant with the pattern position constrains within the rule.

4) Rules List: The rules list maps between a single rule and
its corresponding patterns. Each entry contains the number of
patterns in the rule, and a bitmap with a bit for each pattern.
This data structure is needed to support Snort’s negation
property as well as rules which contain uncorrelated patterns
(more information is available in [2]).

D. A Packet Flow within the NIPS

In this section we will walk through the RTCAM algorithm,
using the example shown in figure 1. Assume that the TCAM
width is 4, the input packet is “WWABCDEFTXYZABC-
DARP“ and we will search for the rules appearing in table I.
At stage 0, the Matched Patterns list is empty.

Initially, we search the packet at position 0. The first key is
wwab (first 4 bytes of the packet), the TCAM lookup retrieves
the ??ab entry and the shift value is 2. The key position within
the packet is then increased by 2. The next key is abcd, the
lookup with this key matches the first TCAM entry and the
corresponding shift value is 0. Now step (iv) of the algorithm

stage 0

Id End Position

pattern 0 pattern 1 pattern 2 pattern 3 pattern 4

"abcdef"
len=6
next
root=true
offset=-1
depth=-1
distance=-1
within=-1
TCAM_Ptrs=0,1

"xyz"
len=3
next
root=false
offset=-1
depth=-1
distance=-1
within=5
TCAM_Ptrs=-1

"ab"
len=2
next
root=true
offset=8
depth=-1
distance=-1
within=-1
TCAM_Ptrs=-1

TRT

"filename"
len=8
next=null
root=false
offset=-1
depth=-1
distance=3
within=15
TCAM_Ptrs=4,5

"abcdarp"
len=7
next=null
root=true
offset=-1
depth=25
distance=-1
within=-1
TCAM_Ptrs=0,6

TCAM Pattern List (contains Pattern Nodes)

abcd

cdef
xyz?
ab??
file
name
darp

???a
??ab
?abc

???a
??ab

?xyz
???c
??cd
?cde

???n
??na
?nam
???f
??fi
?fil

????

???d

??da
?dar

shift:0
association:{0,4}
inclusion:{2}

shift:0
shift:0

shift:0
association:{3}

shift:0
association:{2}

shift:0
association:{1}

shift:3

shift:2
shift:1

shift:3

shift:2
shift:1

shift:3

shift:2
shift:1

shift:3

shift:2
shift:1

shift:0

shift:3

shift:2
shift:1

shift:3

shift:2
shift:1

Id End Position

0 7

stage 1

Id End Position

0 7

???x
??xy

?ab?

shift:3

shift:2
shift:1

1 11

Id End Position

0 7

1 11

4 18

Id PatNum

0 1

Rules Table

Matched Patterns

Matched Patterns

PatIdxArray

1 , 0

stage 2
Matched Patterns

Id PatNum

0 2

Rules Table

PatIdxArray

1 , 1

stage 3Matched Patterns

Id PatNum

Rules Table

PatIdxArray

Id PatNum

0 2

Rules Table

PatIdxArray

1 , 1
2 1 1

Fig. 1. An Example

is invoked and the association pointers are used in order to
compare the full pattern with the packet’s content. The first
association pointer points to a node that contains the pattern
abcdef. The pattern has no offset or depth so there are no
position constraints. The pattern’s length is 6, so the algorithm
takes the next 2 bytes and performs a lookup on the TCAM
with the key cdef (prepending the 2 bytes with the last 2
bytes from the previous lookup). This key also yields 0 as a
shift value and the index of the TCAM entry appears in the
TCAM Ptrs array. The algorithm finds a match, and adds the
pattern to the matched patterns list. The algorithm also turns
on the pattern’s bit in the rule entry bitmap, see stage 1. The
next pointer in the association list for the key abcd points to
a node containing the abcdarp pattern which does not match
the packet content (the lookup on the key darp fails).

Now, the algorithm follows the inclusion list and checks
pattern number 2. Since the constraint on the offset value is 8
and the current position is 2, the algorithm does not match this
pattern. The algorithm increases the search position within the
packet by one, and constructs the search key bcde. This key
matches the last TCAM entry so the shift value is 4 thus the

The contents part of Snort’s rules
content:”abcdef”; content:”xyz”; within:5;
content:”ab”; offset:8; content:”filename”; distance:3; within:15;
content:”abcdarp”; depth:25;

TABLE I

SNORT’S RULES EXAMPLE

next key is ftxy. Within two more lookup operations, a key of
xyza yields a shift value of 0.

Once again the algorithm follows the association pointer
which in this case contains the pattern xyz. Since this is not a
root pattern, the algorithm checks the matched patterns list for
the previous pattern (by id). The previous pattern appears in
the list and its end position is 7. The xyz pattern has a within
value of 5, its length is 3 and the current position is 9. The
algorithm confirms that 9 + 3 ≤ 7 + 5 + 1; thus, the matched
pattern is inserted to the matched patterns list. The algorithm
also sets the pattern’s bit in the rule entry bitmap (see stage
2). Since all the bits in the bitmap are set, the algorithm can
announce an attack. Finally, the search position within the
packet is shifted by one.

Two more lookups result in a match on the key abcd
with a shift value of 0. Yet again, the algorithm follows the
association pointers. The first node contains the pattern abcdef.
Since the lookup for the key cdar yields a shift value greater
than 0, we conclude that the pattern did not match and continue
with the next association pointer (abcdarp). The depth value is
25, the current position is 11 and the pattern’s length is 7. The
algorithm checks that 11+7 ≤ 25. Since the pattern length is
7 (greater than w), the algorithm takes the next byte and hits
the TCAM with the key darp. This key yields 0 as the shift
value and the index of the TCAM entry is in the TCAM Ptrs
array, so the algorithm adds the pattern to the matched list
and sets the bit corresponding to this pattern, in the rule entry
(see stage 3). Since this is the only pattern in the rule, the

algorithm triggers an attack alert.
The algorithm can continue to scan the packet for further

attacks until the entire packet is analyzed.

V. SNORT COMPATIBILITY

The design of RTCAM and its associated data structures
is highly influenced by the requirement to be compatible
with Snort. We have successfully imported Snort’s database
directly to our simulated NIPS and were able to deal with
Snort’s keywords. Due to space limitations, some of the details
concerning Snort compatibility were omitted. The interested
reader is encouraged to read [2].

VI. WORST CASE PERFORMANCE CONSIDERATIONS

The motivation behind using the TCAM in step (iv) of the
algorithm is to benefit from the fast TCAM access speed for
matching long patterns. However, since pattern lengths are
not bounded, there can be no guarantee on the worst case
performance. In order to provide a worst case boundary, we
introduced a simple pre-processing phase to the algorithm. In
this phase, we take every long pattern and convert it to a set
of short patterns (each of length equal or less than w). We
then correlate these sets of short patterns using the distance
and within keywords.

For example, we can split the pattern: abcdefgh into the two
following patterns: abcd (all the keywords of the original pat-
tern remain in the first sub-pattern), and efgh with distance = 0
and within = 4.

The result of this optimization is that “checkSubPatterns”
of step (iv) will never be invoked. The theoretical worst case
scenario is a TCAM hit for each byte in the packet with a
corresponding shift value of either 0 or 1 (i.e. search position
increase of 1), thus yielding a 2 Gbps scan rate.

VII. WINDOW SIZE CONSIDERATIONS

TCAM memory is currently one of the more expensive com-
ponents in a NIPS device. Reducing the amount of required
TCAM space is a major concern. The TCAM width is con-
figurable and is the greatest contributor to space consumption.
The RTCAM memory requirement is calculated as follows:
for a TCAM width of w and k patterns, each of length mi, the
number of TCAM rows is: r = ∑�mi/w�. So the total TCAM
memory required is w2 ∗ r bytes.

Increasing the TCAM width significantly reduces the
amount of false positives and increases the average shift value
(discussed below). Thus, choosing w is a tradeoff between cost
and performances.

A. Effects on the Shift Value

This section analyzes the theoretical expected shift value,
assuming that the packet bytes are evenly distributed. In
order to calculate the shift average, we need to calculate the
probability of matching each of the TCAM rows. Section VIII
provides the shift value measured from a real packet trace.

If the number of the don’t care signs in the pattern Pi is
Ki, there are (28)Ki strings that match Pi. If the shift value of
Pi is Si, Pi contributes (28)Ki ∗Si to the total shift sum. From

TCAM width Impact on Shift Average with ClamAv Patterns Set
TCAM width TCAM memory size (KB) Shift average value

8 2797 7.53
16 7049 15.73
32 24261 31.75

TABLE II

TCAM WIDTH IMPACT ON SHIFT AVERAGE

the sum (28)Ki , we subtract (28)Kj for each pattern Pj that we
count more than once and whose shift value is lower than Si

(for example we subtract the sum of the pattern ?bcd from the
sum of the pattern ??cd). Let Desc(Pi) be a set containing all
such Pj’s for a pattern Pi.

Finally, if Si is the shift value and Sn
i = (28)Ki −

∑Pj∈Desc(Pi)(2
8)Kj , the total average shift value is

∑Si∈0..w Sn
i ∗Si

(28)w .
We calculated the shift average this way and we got that

the average shift value is w/2. If TCAM lookup time is 4ns,
the matching speed is 8∗n

4(n/(w/2)) = w Gbps. This result will
encourage us to increase the TCAM width. Note, however,
that there is a clear tradeoff between window size, required
memory, speed and cost.

VIII. EXPERIMENTAL RESULTS

We have fully implemented a software version of an
RTCAM-NIPS device written in Java and have tested our
simulation with two complex pattern sets. The first of this sets
is a virus signature set from ClamAV [17], which contains only
simple patterns (relatively long). The second set is comprised
of intrusion detection signatures taken from the Snort [3] tool.
Most of these signatures are comprised of correlated patterns.
The input for our NIPS was comprised of a real packet trace
from the MIT DARPA project [18].

We simulated our NIPS device using several TCAM widths.
Choosing the right width is a very crucial decision in in-
troducing this solution to the industry, since there is a clear
tradeoff between TCAM cost and overall system performance.
We compared our results with the ones presented by Lakshman
et al., since these are currently the only two algorithms that
use a TCAM.

A. Results on ClamAV Pattern Set

ClamAV version 0.82 has 26987 simple patterns and the
average pattern length is 124.1. The performance results of
our NIPS, when operating on the ClamAv database, appear in
table II.

Let d denote the ratio of speeds of TCAM vs SRAM access.
Our NIPS performance, for a system with 4ns TCAM access
time, is about Naive Scan Rate·Shi f t Avg

1+d Gbps (Note that the 1
in the denominator denotes the TCAM access time and d is
the SRAM access time). d is influenced by Sn, which is the
number of SRAM accesses for each TCAM access and by the
speed of each SRAM access.

We define a memory ratio, Mr, to be the ratio between the
TCAM access speed and SRAM access speed. For example,
a memory ratio of 0.2 means that memory access speed is
5 times faster than the TCAM access speed. Let Sn be the

TCAM width Impact on Shift Average with SNORT Pattern Set
TCAM width TCAM memory size (KB) Total shift average

4 26 2.62
8 99 4.42
16 443 6.06
24 912 7.41
32 1990 7.67
48 4760 8.31
64 8735 9.11
96 20273 9.17

128 36591 9.57

TABLE III

TCAM WIDTH IMPACT ON SHIFT AVERAGE

number of SRAM accesses for each TCAM access and let d
be Sn ×Mr.

When there are no attacks, Sn = 1, resulting in d = Mr.
Since the values of the memory ratio are in the range of 0.2
to 1, the throughput average, when there are no attacks, is in
the range of 63.5

1+0.2 = 52.9 Gbps to 63.5
1+1 = 31.75 Gbps.

Since ClamAV signatures are relatively long, most of the
time the algorithm yields 0 as a shift value when a real attack
occurs. Thus, at ClamAV, Sn = 1 also for the average case,
so this range is true for this case as well.

B. Results on SNORT Pattern Set

Snort’s case is more complicated, since Snort patterns
include many short patterns (of size ≤ 4). In most of the
cases, these patterns are part of correlating rules. Our algo-
rithm matches these patterns, resulting in a very low average
shift (around 2, independent of the TCAM width). Thus, we
eliminate the TCAM matches by adding more information to
each TCAM row besides the pattern itself. We created a hash
function h whose input is the additional data D and whose
output is a key k, h(D) = k. We added k to each entry in the
TCAM. The assumption of this solution is that most of the
short patterns are related to specific flows and do not have to
be checked for any received packet.

We added a bitmap of one byte for the main protocols and
another value that represents the range of the lowest port and
the highest port associated with this pattern. For example, if a
pattern appears with the ports: 2048, 3400 and 7777, the port
key will be: 11???0??0?00?.

With this extension we saw significantly better results. Table
III presents the TCAM memory size requirement and the shift
average value for each TCAM width. Figure 2 shows the
tradeoff between TCAM memory and the average shift value.
We can see that even with the additions of the flow data to the
TCAM key, the shift average grows slowly when the TCAM
width is greater than 24. After this value, the tradeoff is not
significant. In contrast to the moderated growth of the shift
average, the TCAM memory size grows exponentially.

1) Scanning Time Results: The algorithm presented in
Lakshman et al. presents a scan rate of 2 Gbps in the best
case. The algorithm achieves this rate when the scan ratio is
1, meaning that there are no memory accesses at all.

The most significant factor affecting the scanning time is the
TCAM lookups, as well as the memory accesses. As opposed
to the algorithm presented by Lakshman et al. where a TCAM

hit does not necessarily require a memory hit, our algorithm
hits the memory at each TCAM hit in order to procure the
shift value. Our main advantage over the Lakshman et al.
solution is that our algorithm hits the TCAM significantly
fewer times. Even though our algorithm hits the memory for
each TCAM hit, the total number of memory hits is also
significantly less than those of Lakshman et al. Figure 3(a)
shows our improvement in the number of memory hits. Figure
3(b) presents the number of TCAM lookups our algorithm
required for different packets length. In terms of this factor,
our algorithm is significantly better than Lakshman et al.
algorithm.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

Packet Length

M
em

or
y

A
cc

es
se

s

TCAM width = 16

Ours
Lakshmans

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

1800

Packet Length

M
em

or
y

A
cc

es
se

s

TCAM width = 32

Ours
Lakshmans

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

1800

Packet Length

M
em

or
y

A
cc

es
se

s

TCAM width = 64

Ours
Lakshmans

(a) Memory Accesses

0 500 1000 1500
0

500

1000

1500

2000

2500

Packet Length

T
C

A
M

 A
cc

es
se

s

TCAM width = 16

Ours
Lakshmans

0 500 1000 1500
0

500

1000

1500

2000

2500

Packet Length

T
C

A
M

 A
cc

es
se

s

TCAM width = 32

Ours
Lakshmans

0 500 1000 1500
0

500

1000

1500

2000

2500

Packet Length

T
C

A
M

 A
cc

es
se

s

TCAM width = 64

Ours
Lakshmans

(b) TCAM Accesses
Fig. 3. Memory Accesses

Running the simulation using a MIT DARPA trace showed
that for a TCAM width of 24, 60% of the TCAM hits result
in a shift value greater than 0. Since the RTCAM algorithm
accesses the SRAM every TCAM lookup, the scan ratio (as
defined in [12]) is 2. The simulation results for this TCAM
width showed that the average shift value is 7.4. Since SRAM
memory access speed is usually faster than the TCAM speed,
we define a memory ratio to be the relation between these
speeds. For example, a memory ratio of 1 means that SRAM
access speed is equal to TCAM access speed. In current
memory technologies, the ratio is 0.2, i.e. memory access
speed is 5 times faster than TCAM access speed. Taking this
figure, we can achieve a throughput of 2×7.4

1+0.2 = 12.35 Gbps.

0 20 40 60 80 100 120 140
0

1

2

3

4
x 10

4

TCAM width

T
C

A
M

 s
iz

e
(K

B
)

Impact of TCAM Width

0 20 40 60 80 100 120 140
2

4

6

8

10

S
hi

ft
av

er
ag

e

Fig. 2. TCAM vs. Shift Average Tradeoff

IX. DISCUSSION AND FUTURE WORK

We have designed and implemented a full NIPS system
that is based on a novel pattern matching algorithm, called
RTCAM. We have shown that our solution is adequate for
NIPS device developers, as it achieves line-speed rates. Specif-
ically, for about 60% of real network traffic, an average line-
speed of 12.35 Gbps can be achieved. This paper presents
several major advantages over existing NIPS devices. First, the
achieved line-rate speed is several orders of magnitude faster
than related works. Second, as opposed to other solutions, our
system is fully compatible with Snort’s rules syntax. This is
an important advantage as Snort is becoming the de facto
standard for intrusion detection and prevention systems. We
have created a simple tool that is capable of importing Snort’s
database at the click of a mouse.

We have already initiated a lab project for prototyping a
hash-based algorithm using FPGA. We would like to be able
to compare the performance of the FPGA and the RTCAM
solutions. Another important research area is cross packets
inspection. Intuitively, it seems that the level of support
for this problem is proportional to the amount of memory
available on the intrusion detection device. Still, we would
like to explore the various possibilities for dealing with this
problem and to provide some experimental results. Finally,
we plan to design an integrated RTCAM circuit that will
automatically compare the provided key with the rotations of
each pattern in the TCAM (using dedicated circuitry). This
will significantly reduce the amount of TCAM memory needed
by the algorithm.

REFERENCES

[1] VanDyke Software. Homepage at http://www.vandyke.com/, keywords
= vandyke, source = http://www.vandyke.com/.

[2] Hardware NIPS Project Home Page. Homepage at
http://www.cs.huji.ac.il/labs/danss/nips.

[3] Snort. http://www.snort.org/.
[4] Charles E. Leiserson Thomas H. Cormen and Ronald L. Rivest.

Introduction to Algorithms. The MIT Press, 1990.
[5] B. W. Watson, G. Zwaan, and Mrs F. Van Neerven. A taxonomy of

keyword pattern matching algorithms. Technical report, January 28
1992.

[6] Donald E. Knuth, J.H. Morris, and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal of Computing, 6(2):323–350, 1977.

[7] David R. Musser and Gor V. Nishanov. A fast generic sequence matching
algorithm, May 13 2004.

[8] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):62–72, 1977.

[9] Artur Czumaj, Leszek Gasieniec, Stefan Jarominek, Thierry Lecroq,
Wojciech Plandowski, and Wojciech Rytter. Fast practical multi-pattern
matching, October 11 1993.

[10] A. Czumaj, L. Gasieniec, M. Crochemore, S. Jarominek, T. Lecroq, and
W. Plandowski. Fast practical multi-pattern matching, September 02
1999.

[11] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an
aid to bibliographic search. Communications of the ACM, 18(6):333–
340, 1975.

[12] Yu Fang, Randy H. Katz, and T. V. Lakshman. Gigabit rate packet
pattern-matching using tcam. In ICNP, pages 174–183, 2004.

[13] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep
packet inspection using parallel bloom filters, 2003.

[14] David E. Taylor, Praveen Krishnamurthy, and Sarang Dharmapurikar.
Longest prefix matching using bloom filters, September 03 2000.

[15] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen, and Chia-Nan Kao. A
fast string-matching algorithm for network processor-based intrusion
detection system. Trans. on Embedded Computing Sys., 3(3):614–633,
2004.

[16] Trevis Chandler Igor Arsovski and Ali Sheikholeslami. A ternary
content-addressable memory (tcam) based on 4t static storage and
including a current-race sensing scheme. IEEE Journal of Solid-State
Circuits, 38(1), January.

[17] Clamav. http://www.clamav.net/.
[18] Mit darpa project data set. http://www.ll.mit.edu/IST/ideval/index.html.

